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Self-consistent-field theory of a brush of randomly branched polymers
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The conformational properties of randomly branched polymers grafted at one end on a planar surface in the
good solvent regime are investigated by using a Flory-type scaling theory and by solving a self-consistent-field
model numerically. The average monomer height obtained from the self-consistent-field model is shown to be
in agreement with the scaling behavior predicted from the scaling theory. The density profile is found to have
a near-parabolic form with some discrepancies near the surface and the brush end.@S1063-651X~97!05501-3#

PACS number~s!: 36.20.2r, 82.65.Dp, 61.25.Hq
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I. INTRODUCTION

The study of the behavior of tethered polymer chains
attracted considerable interest due to the wide range of p
tical applications@1#. Several approaches, including scali
analyses @2,3#, self-consistent-field theories@4–10#, and
Monte Carlo~MC! @11–14# and molecular-dynamics simula
tions @15,16#, have been employed to model these syste
In these studies, the conformational properties of linear po
mer brushes are consistently shown to obey universal sca
laws. Branched polymers, naturally occurring or chemica
synthesized, are also expected to display various static
dynamic scaling behaviors that are system independent.
a challenging and certainly not a trivial theoretical proble
to understand the conformational properties of the polym
brush formed by branched polymers. Recently, Carign
and Szleifer@17# explored the conformational and thermod
namic properties of graftedY-shaped polymer brushes b
using an approach based on the probability distribution fu
tion formalism @10#. Zhulina and Vilgis @18# presented a
simple scaling analysis for the brushes formed by regula
and randomly branched polymers.

While many statistical properties of regularly branch
polymers such as comb, star, and starburst polymers
similar, randomlybranched polymers~RBPs! form their own
classes of properties that are, in general, quite different f
those of the regular ones. In the present work, we st
scaling behaviors of the brush height and monomer den
of a brush formed by randomly branched polymers in a go
solvent with one end grafted to a planar surface. Accord
to the classification of Gutin, Grosberg, and Shakhnov
@19#, RBPs should be further distinguished according to th
branching structures. Those withannealedbranchings and
those withquenchedbranchings may display different be
haviors. In this paper we focus on the properties of annea
branched polymers, whose branching structures are
trolled by maintaining a constant branching activity and th
are directly affected by the monomer-monomer interactio
This implies that there is an additional, structural entro
contribution to the free energy besides a conventional, c
551063-651X/97/55~2!/1660~8!/$10.00
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formational entropic contribution@19#. We present below a
Flory-type argument that includes these entropic contri
tions and an excluded-volume energy, which leads to
power-law scaling behavior of the average brush height a
function of the molecular weight and surface coverage. T
resulting ‘‘brush exponent’’ to be defined below, is differe
from that of quenched RBP brushes recently studied
Zhulina and Vilgis@18#.

We have also performed a numerical calculation based
the self-consistent-field~SCF! approximation to further sup
port our conclusion. As is well known, the SCF approxim
tion is a powerful method to treat confined systems cons
ing of many interacting polymers@4#. The basic technique is
to obtain the information on chain configurations represen
by the end-to-end Green’s function by solving a partial eq
tion subject to a potential that, in turn, depends on the mo
mer density self-consistently. For linear brushes, the ana
cal SCF theory@7,8# yields a simple analytic prediction fo
the structure of the system of moderately high surface c
erage. For instance, the segment density profile and the
tential field are found to be parabolic, of the forma2bz2,
wherez is the distance from the surface. For RBP brush
the SCF model@20# allows us to examine the basic structu
of the theory, but is almost impossible to be solved anal
cally. We thus resort to a numerical SCF method for t
investigation. Our method is based on the statistics o
single polymer brush and overcomes the usual difficult
associated with modeling many polymers simultaneously
a typical computer simulation. For linear polymer brush
this method generates results in overall agreement with
analytical SCF theory.

This paper is organized as follows. A Flory-type arg
ment for the height of the brush is presented in Sec. II, wh
a scaling theory based on the blob assumption is discusse
the Appendix. A mean-field theory for the systems of inte
acting randomly branched polymers is briefly discussed
a MC numerical method is proposed in Sec. III. The resu
for a variety of molecular weights and surface coverages
linear-chain and annealed RBP brushes are presented in
IV. Section V is devoted to a summary.
1660 © 1997 The American Physical Society
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II. SCALING ANALYSIS

The Flory-type argument is a simple and efficient the
retical treatment for the scaling behaviors in many polym
systems. When it is applied to linear-polymer brushes
good solvents, the conformational properties are determ
by balancing the repulsive excluded-volume interaction
ergy with the entropic energy penalty of stretching a typi
chain away from the grafting surface. The scaling form
the average height is obtained by minimizing the free ene
with respect toh, which yieldsh;N(us)1/3, whereh is the
brush height,N the molecular weight of a single chain,s the
number of chains per unit surface area, andu the excluded-
volume parameter of two interacting monomers@2#. For
moderates and largeN, this result agrees with those ob
tained by other methods, such as the scaling argumen@3#
that is based on a blob model, the analytical SCF theory@7,8#
that utilizes a classical trajectory approach, and numer
simulations @13,14# that are based on various numeric
methods.

We consider a RBP brush grafted at one end on a pla
surface with a grafting coverages in a good solvent. Each
monomer, except the one directly embedded on the surf
is assumed to be trifunctional, from which a branch m
grow with a certain branching probabilityL2. According to
Gutin, Grosberg, and Shakhnovich@19#, the Flory-type free
energy for such a polymer, moving freely in a solvent, co
tains three termsFe , Fr , andFs corresponding to the elasti
energy, the volume interaction potential, and the entro
contribution from the rearrangement of branching structu
respectively. The elastic energy has the form

Fe5
h2

L
, ~1!

where L is the average contour length of a representa
branch starting at the surface grafting site to a free exte
end. The energy of the excluded-volume interaction betw
a representative polymer with the mean-field densitysN/h
produced by the monomers is approximated by

Fi5us
N2

h
. ~2!

The excluded-volume interaction is responsible not only
making polymers stretching away from the surface but a
affects the statistics of the branching structure. The con
mation entropic contribution to the energy due to such
effect can be evaluated@19,21# by using de Gennes’ dia
grammatic method@22#

Fs5
L2

N/L
. ~3!

In comparing with Gutin, Grosberg, and Shakhnovich
original expression@19#, we have introduced the factorL in
Eq. ~3! in order to account for the branching probabilit
which is assumed to be related to the mean tribranch
numbern3 of the molecules@22,23#

L5
n3
N
, ~4!
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when the large-N limit is considered. de Gennes showed E
~4! in Ref. @22# for RBP solutions in theu point condition.
We showed earlier@23# through perturbation expansion th
in the case of annealed RBPs in a good solvent, the s
relation is valid asymptotically for largeN. Caution should
be used in the practical use of Eq.~4!, as n3/N may vary
dramatically at smallN and n3 , and approaches a
N-independent constant only at largeN. In this paper, we
assumewithout proof that the same relation exists even
the case of imposing a hard-wall boundary condition.

Minimizing the free energyF5Fe1Fi1Fs with respect
to L andh we find the expression for the equilibrium brus
height

h;~us!3/7NL21/7. ~5!

We may rewrite this equation in terms of the ratioh/h0
whereh0; l (N/L)1/4 @24# is the mean brush height of idea
polymers when no interaction is present

h

h0
.Vl, ~6!

where

V5usL2S NL D 7/4. ~7!

The brush exponentl~Flory!53
7 characterizes the scaling be

havior of RBP brushes.
The Flory-type theory presented above is valid in the d

sity regime where the approximation of the second vir
coefficient can be adopted for the interaction energy. T
particular form of the interaction energy in Eq.~2! explicitly
reflects this approximation. Polymer brushes of high-volu
density behave more like a polymer melt, which cannot
described simply by the quadratic term in the dens
Higher-order virial coefficients must be included. The Flor
Huggins energy~12f!ln~12f!, wheref is the volume frac-
tion, is probably a more suitable choice for qualitatively d
scribing the high-volume-density behavior. Another poten
problem of the Flory-type theory is its use of the elas
energy of the form in Eq.~1!, which is based on a Gaussian
like distribution function forh. Since the distribution func-
tion could be quite different from the Gaussian form at t
highly stretched limit, the elastic energy that acts to confi
the polymers near the surface is underestimated at this li
Generally, the Flory-type theory and the scaling behav
predicted from it are valid in the moderate-volume-dens
regime.

An interesting similarity exists between the expressio
for the mean brush heights of randomly branched polym
and linear polymers: both depend linearly onN. The fact that
RBPs with annealed branchings may attempt to move
branching points farther from the surface to acquire m
packing space makes the density distribution function qu
smooth, if not flat. We may use the linear dependence oN
as the starting point for a scaling theory based on the b
model similar to that proposed by de Gennes@2# for the
linear brushes. As shown in the Appendix, such a the
results in the same scaling behavior predicted by the Flo
type theory presented above.
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1662 55SHI-MIN CUI AND ZHENG YU CHEN
Zhulina and Vilgis @18#, however, studied the brus
formed by attaching one end of branched polymers w
quenchedbranching structures to a flat surface. It has be
generally shown that annealed and quenched rando
branched polymers behave differently in a good solv
@19,21#. The theory of Zhulina and Vilgis@18# is equivalent
to using the free energyF5Fe1Fr with the mean lengthL
in Eq. ~1! replaced by its mean value at theu temperatureh0

2.
The third term in the free energy Eq.~3! does not exist due
to the fixed topology. The resulting equilibrium mea
height also has the scaling form given by Eqs.~6! and ~7!,
however, with a different brush exponentl8~Flory!51

3. In
terms of a direct power-law expression,h~quenched!
5(us)1/3N5/6L21/6. The major difference between the a
nealed and quenched cases is in the scaling dependen
N: annealed polymers tend to stretch farther from the surf
and the quenched polymers tend to maintain a ‘‘slowe
power-law behavior because of the structure constraint.
structure constraint further sets a maximum extension li
on the quenched polymers@18#, while the annealed polymer
can, in principle, be rearranged and stretched to reac
maximum extension ofNl from the surface, with the cost o
losing conformational and structural entropies. It is wo
noting that the brush exponent for quenched RBP brus
~l5 1

3! is the same as the exponent that governs the sca
behavior of linear-chain brushes, when the latter is expres
in terms of scaled variables in a form similar to Eq.~6!.

III. SELF-CONSISTENT-FIELD MONTE CARLO
METHOD

An elegant result in the theory of linear polymer brush
is the parabolic solution of the density profile derived
Milner, Witten, and Cates@7# and Skvortsovet al. @8#. This
analytic result sets an asymptote for theN@1 limit and has
been checked by various numerical simulations. The suc
of the theory largely depends on the similarity in the form
lation structures of the linear polymer theory and the cla
cal dynamics of a single particle.

The mean-field theory for branched polymers, howev
lacks its analogy in classical mechanics. The import
physical quantity is the Green’s functionG0~r ,r 8;t! of a ran-
domly branched polymer containingt monomers with two
external ends having positions denoted by vectorsr and r 8,
which can be shown@20# to obey a nonlinear partial differ
ential equation in the presence of a mean field. For R
brushes grafted on a flat surface, the mean field can be
sidered as a function of the variablez along the normal to the
surface,

v~z!5ur~z!, ~8!

whereu is the excluded-volume parameter andr(z) is the
average monomer density. By summing over the probab
of configurations passing through a spatial pointz, r(z) is
determined by the three-point correlation function@23#,
which satisfies a complicated equation due to the branch
structures@see Eq.~3.2! of @23##. Note thatr(z) is directly
proportional to the number of polymers per unit graftin
surface areas in the SCF approximation and thus thatu and
s appear as a single combination.

There are several numerical procedures in the literatur
solve the mean-field equation for linear polymer syste
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@4–6,9,10#. However, it is very difficult to generalize thes
methods to obtain the monomer density of the RBP syste
by solving the SCF equations@20#. Here we adopt a MC
numerical procedure that enables us to calculate the den
profile directly by using Eq.~8!. The main idea is to isolate
the structure complicity, which is modeled by a MC proc
dure, from making a mean-field approximation for the inte
action energy.

We used an iterative MC simulation method, which co
tains the following procedure. An initial density profiler(z)
was proposed and used in the mean potential fieldv(z)
5ur(z) for an initial MC run, in which the statistics o
polymers with different branching structures and configu
tions were sampled and a new average density profile
‘‘measured.’’ This profile was then used as an approximat
for the mean field of the next run and a new density pro
was produced. The procedure was considered conver
when the relative difference between density profiles of
two consecutive runs became smaller than a preset crite
This method was shown to be very efficient for solving t
grafted problems of linear chains as well as random
branched polymers.

More specifically, each MC run consisted of a number
MC steps. The MC method used in this study is a gener
zation of the off-lattice pivot method developed for the h
mogeneous systems of randomly branched polymers@21#,
except for the part of imposing a hard-bead interacti
which is now represented by the effective mean field. In o
simulations, the RBP model was treated as a treelike m
ecule of links ofN identical rigid bonds of lengthl , freely
jointed together in three-dimensional space, with one e
permanently fixed atr50. The flat surface was assumed im
penetrable and placed parallel to thex-y plane atz50. The
other monomers were constrained to move in the posi
half space~z.0!. For a flat surface, we broke the space in
discrete slabs of widthl /4 and treated the density within eac
slab as a constant. The density was then calculated as a
tion of z only, due to the symmetry; nox or y dependence
was taken into consideration. At every MC step, a branch
position was chosen at random and one of the neighbo
bonds was cut to produce two pieces of the polymer: one
connected to the surface and another free from the surf
The free portion of the polymer was rotated as a rigid bo
to a new position randomly. Then an arbitrary point on t
unrotated portion of the polymer was located for reconne
ing the two pieces. The configuration was rejected if t
chosen point was already branched. Each monomer was
ject to an external potentialur(z). Subsequently, the new
configuration was accepted or rejected according to the u
Metropolis algorithm of comparing the Boltzmann facto
corresponding to the two configurations. At this point w
calculated the average monomer distribution function.
typical run consisted of approximately 2N3104 MC steps.

In the next run, the obtained density profile was sub
tuted into the mean field and a new density profile was c
culated the same way. The moments of the density profi

^zn&[E
0

`

znr~z!dzY E
0

`

r~z!dz ~n51,2,...! ~9!

were calculated at the end of each run. The iterations o
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55 1663SELF-CONSISTENT-FIELD THEORY OF A BRUSH OF . . .
series of runs were terminated when the relative differe
between the new and old moments^zn& ~n51,2,...,10! of the
density profiles became less than 1023. For a given set of
molecular weight and surface coverage, a typical calcula
that was performed contained usually less than four ite
tions.

IV. RESULTS AND DISCUSSION

The algorithm proposed above is quite general and is
dependent of the type of polymers under study. To test
algorithm, we first studiedlinear polymer brushes for vari-
ous surface coveragess50.025, 0.05, 0.075, 0.10, 0.15, 0.2
and various chain lengthsN510,20,50,100,150,200,300
400,500. The average monomer height and the root-m
square radius of gyration̂zg

2&1/2, where^zg
2& is defined as

FIG. 1. Scaled average brush height^z&/N1/2 and the mean-
square radius of gyration normal to the surface^zg

2&1/2/N1/2 of a
linear brush plotted as a function ofsN3/2 on a log-log scale for
s50.025 ~circles!, 0.05 ~squares!, 0.075 ~diamonds!, 0.10 ~up tri-
angles!, 0.15 ~left triangles!, and 0.20~down triangles!. The two
straight lines indicate the asymptotic behavior with the same s
of 1

3.

FIG. 2. Scaled monomer density profiles22/3r(z) as a function
of scaled distance from the grafting surfacez/(s1/3N) of a linear
brush for ~N,s!5~100,0.05! ~circles!, ~100,0.10! ~squares!, ~100,
0.20! ~diamonds!, ~200,0.05! ~up triangles!, ~200,0.10! ~left tri-
angles!, ~200,0.20! ~down triangles!, ~400,0.05! ~right triangles!,
and ~400,0.10! ~crosses!. The solid line corresponds to the analy
cal SCF result from Eq.~12!.
e

n
-

-
ur

n-

^zg
2&5

1

N (
i51

N K S zi2 1

N (
i51

N

zi D 2L , ~10!

are plotted in Fig. 1 as functions ofV5sN3/2. For conve-
nience, in the rest of this paper we set the Kuhn lengthl51

e

FIG. 3. Scaled chain-end probability distributions1/3NrE(z) as
a function of scaled distance from the grafting surfacez/(s1/3N) of
a linear brush. The solid line corresponds to the analytical S
result from Eq.~13!. The meaning of the symbols is the same as
Fig. 2.

FIG. 4. ~a! Scaled average brush height of monome
^zi&/(s

1/3N) and ~b! relative z-component mean-square displac
ment of the monomer positions^Dzi

2&/^zi&
2 as a function ofi /N for

linear chains. The solid line corresponds to the analytical SCF
sults from Eqs.~14! and ~15!. The meaning of the symbols is th
same as in Fig. 2.
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TABLE I. Numerical results for the conformational properties of the RBP brushes.

s N ^z& ^zg
2& n3 s N ^z& ^zg

2& n3

0.025 10 1.181 0.464 2.139
20 1.816 0.933 5.015
50 3.507 2.937 13.60
100 6.195 8.549 27.96
150 8.961 17.32 42.28
200 11.59 27.86 56.65
300 17.00 59.00 85.22
400 22.42 101.0 113.9
500 28.18 161.0 142.4

0.05 10 1.248 0.509 2.122
20 2.008 1.125 4.969
50 4.183 4.177 13.45
100 7.784 13.54 27.64
150 11.35 27.54 41.78
200 14.77 45.90 55.87
300 21.84 104.8 84.09
400 29.00 181.0 112.3
500 35.57 270.3 140.5

0.075 10 1.315 0.552 2.103
20 2.175 1.313 4.915
50 4.676 5.289 13.33
100 8.875 17.98 27.26
150 12.93 37.65 41.26
200 17.10 65.16 55.29
300 25.63 147.3 83.10
400 33.57 249.8 110.8
500 40.85 376.4 138.3

0.10 10 1.365 0.585 2.094
20 2.325 1.484 4.876
50 5.171 6.507 13.18
100 9.865 22.60 27.06
150 14.30 46.19 40.88
200 19.13 81.33 54.72
300 27.74 179.4 82.24
400 37.53 318.7 109.6
500 45.87 486.9 136.3

0.15 10 1.468 0.668 2.056
20 2.568 1.795 4.784
50 5.861 8.283 12.96
100 11.25 29.18 26.59
150 16.92 64.81 40.24
200 22.23 113.5 53.49
300 32.36 237.7 80.40
400 42.65 443.4 106.9
500 51.50 629.5 133.2

0.20 10 1.557 0.739 2.021
20 2.778 2.085 4.703
50 6.377 9.942 12.77
100 12.36 36.98 26.15
150 19.08 86.32 39.14
200 24.13 139.6 52.65
300 36.06 317.7 78.77
400 47.05 538.3 103.9
500 56.24 773.6 130.9
dic-

,
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ong

the

rical
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dy

of
ng
ms
and the volume parameteru51 sinceu ands always appear
as a single combination in the mean-field approximation. T
figure shows an excellent agreement with the analytical S
results: the data points fall almost exactly on the straight l
characterized by a slope of13. The brush heighth reaches an
asymptotic behavior that can be approximated by

h5~0.7460.02!s1/3N, ~11!

which is consistent with the analytical resu
h5(4s/p2)1/3N. In Fig. 2 we show the scaling plot of th
density profiles22/3r(z) as a function ofz/(s1/3N) for dif-
ferent surface coverages and molecular weights. The s
curve in Fig. 2 is the SCF result@7,8#

s22/3r~z!5
3

2 F S p2

4 D 1/32S z

s1/3ND 2G . ~12!

The simulation results are well represented by the parab
equation~12!. The scaling dependence onN and s of the
chain-end density distributionrE(z) is also tested by plotting
s1/3NrE(z) againstz/s

1/3N in Fig. 3 together with the SCF
prediction~solid curve!:

s1/3NrE~z!5
3p2

4 S z

s1/3ND F S 4p2D 2/32S z

s1/3ND 2G1/2.
~13!
he
CF
ine

lt
e

olid

olic

The agreement between the data points and the SCF pre
tion is fair; previous numerical studies@13,14# also showed
that the comparison ofrE(z) is less satisfactory. In addition
we also compared with the analytical SCF prediction t
average height̂ zi& of the i th monomer and the relative
mean-square displacement of the monomer positions al
the z axis ^Dz i

2&/^zi&
2, where ^Dz i

2&5^z i
2&2^zi&

2. Once
again, the data shown in Fig. 4 are well represented by
SCF theory~solid curve!

^zi&
s1/3N

5
3

8 S p

2 D 1/3 sin ip

2N
~14!

and

^Dzi
2&

^zi&
2 50.1528. ~15!

Considering the overall agreements between these nume
results and the well-known theories, we conclude that o
numerical procedure provides an effective method to stu
the polymer brush problem.

Next, we present the numerical results for the brushes
randomly branched polymers. In order to verify the scali
equation deduced earlier in Sec. II, we examined syste
with various values ofs ~50.025,0.05,0.075,0.10,0.15,0.20!
and N ~510,20,50,100,150,200,300,400,500!. Table I is a
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55 1665SELF-CONSISTENT-FIELD THEORY OF A BRUSH OF . . .
summary of the original data obtained for the mean br
height ^z&, mean-square radius of gyration̂zg

2&, and the
mean tribranching numbern3 from the calculations.

We show in Fig. 5 a log-log plot of^z&/(N/L)1/4 and
^zg

2&1/2/(N/L)1/4 as functions ofV5sN7/4L1/4 for all the
data points shown in Table I. It can be observed from Fig
that the data for largeV lie closely on a straight line for both
^z& and ^zg

2&1/2 and that the slopes of the two straight lin
are almost the same. This implies that the asymptotic sca
behavior in Eq.~5! is indeed valid for largeV. Using the
data points corresponding toV>20, we estimated the brus
exponent

l50.4160.02. ~16!

This value is quite close to the Flory exponent@l~Flory!5
3
750.43# discussed above and is substantially larger than
linear-brush value@l~linear!51

3#. By examining Fig. 5, we
see that the data points approach the asymptotic beha
from the above, which implies that the effective expone
determined from the numerical data is always sligh
smaller than the actual value. The numerical investigat
strongly supports the Flory exponentl53

7 for annealed RBP
brushes.

Figures 6~a! and 6~b! show several mean density profile
r(z) obtained for different surface coverages and molecu
weights. Qualitatively, the overall shape of the mean mo
mer density is comparable to those found for linear polym
brushes. Because a RBP is a denser object than its li
counterparts, the density profiles are ‘‘compressed’’ m
closely to the surface. Near the first few monomer distan
from the surface, the profiles show oscillations up to ab
2–3 monomer layers. Such oscillations inr(z) were also
observed in other simulations of the linear polymer brus
@10,13#. In our case, the oscillations are probably due to
discreteness of choosing a rigid bond of fixed length to c
nect two monomers in the model. Slightly away from t
surface, the profile shows a peak. We observe that the p
tion of the peak is insensitive to both molecular weight a

FIG. 5. Scaled average brush height^z&/(N/L)1/4 and the mean-
square radius of gyration normal to the surface^zg

2&1/2/(N/L)1/4

plotted as a function ofV5sN7/4L1/4 on a log-log scale for
s50.025 ~circles!, 0.05 ~squares!, 0.075 ~diamonds!, 0.10 ~up tri-
angles!, 0.15~left triangles!, and 0.20~down triangles! for the brush
formed by randomly branched polymers. The two straight lines
dicate asymptotic behavior with the slope of 0.41.
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surface coverage and that the height of the peak is inde
dent of the molecular weight as in the case of linear cha
@14#. Following the peak, the profile decays monotonical
Near the brush end, the polymers are not stretched and
monomer density decays to zero smoothly.

In order to examine the scaling behavior for RBP brush
we plot in Fig. 6~c! the scaled profiles24/7L21/7 r(z) as a
function of the scaled distancez/s3/7NL21/7 from the graft-
ing surface for several sets ofN and s. Except near the

-

FIG. 6. Monomer density profiler(z) as a function of distance
from the grafting surfacez for the brush formed by randomly
branched polymers~a! corresponding toN5200 and s50.025
~circles!, 0.05~squares!, 0.075~diamonds!, 0.10~up triangles!, 0.15
~left triangles!, and 0.20~down triangles!; ~b! corresponding to
s50.10 andN550 ~circles!, 100 ~squares!, 150 ~diamonds!, 200
~up triangles!, 300~left triangles!, and 400~down triangles!; and~c!
scaled plot for~N,s!5~100,0.05! ~circles!, ~100,0.10! ~squares!,
~100,0.20! ~diamonds!, ~200,0.05! ~up triangles!, ~200,0.10! ~left tri-
angles!, ~200,0.20! ~down triangles!, ~400,0.05! ~right triangles!,
and ~400,0.10! ~crosses!.
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grafting surface and the brush end, most data colla
roughly onto a single universal curve. Note that near
brush end the decay to zero is sharper for systems of hi
molecular weight or larger surface coverage. The br
height h can be estimated from the point whenr(z)50 is
first approached in Fig. 6. For the larger-N limit, we have

h5~0.5760.03!s3/7NL21/7. ~17!

The shape of the universal density profile closely resembl
parabolic curve; however, we are not able to verify analy
cally the existence of a parabolic function through solvi
the mean-field model.

We also calculated the density distributions for the fre
end monomersrE and for the tribranching monomersrT ,

FIG. 7. Density profile of the free-end monomersrE(z) as a
function of distance from the grafting surfacez for the brush
formed by randomly branched polymers. The meaning of the s
bols is the same as in Fig. 6.
se
e
er
h

a
-

-

which are plotted in Figs. 7 and 8. Since the branching po
are randomly constructed, the profiles ofrE(z) and rT(z)
qualitatively display behavior similar to that of the overa
monomer density profile ofr(z). These plots indicate tha
there is a uniform distribution of the tribranching units a
the free-end units over the whole brush layer. This is v
different from the chain-end density profile of linear brush
where there is a peak~see Fig. 3! indicating that the free end
will preferably stay away from the hard surface. The scal
dependence ofrE andrT onN ands is further demonstrated
by plotting s3/7L28/7 rE(z) and s3/7L28/7 rT(z) againstz/
s3/7NL21/7 in Figs. 7~c! and 8~c! for several sets ofN ands.
Again these plots show that universal asymptotic scaling
haviors exist.

-

FIG. 8. Density profile of the tribranching monomersrT(z) as a
function of distance from the grafting surfacez for the brush
formed by randomly branched polymers. The meaning of the s
bols is the same as in Fig. 6.
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V. SUMMARY

We have studied annealed RBP brushes of different
lecular weights grafted on a planar surface in the good
vent condition at different values of surface coverages.
have used a single-polymer SCF approximation in which
mean field represents effectively the interactions betw
monomers; the mean field is expressed in terms of the l
volume concentration dependence of polymers. Using an
erative Metropolis MC method for single-polymer config
rations, we obtained the conformational properties num
cally. We found that the average monomer height scale
h/(N/L)1/4;Vl for V5sN7/4L1/4>20 for the range of pa-
rameters considered here. The ‘‘brush exponent’’l has a
value of 0.4160.02 for annealed RBP brushes. The dens
profile is found to have the same qualitative form as tha
linear-chain brushes. Most significantly, the monomer d
sity profile also displays a paraboliclike form, which at t
present has no support from an analytic solution.

Our calculation is based on the SCF approximation. I
known that such a mean-field model would fail when t
spatial fluctuations of the monomer density became la
Such fluctuations become important when polymers
grafted to a surface with low surface coverage. For rando
branched polymers, the additional structural fluctuatio
would probably further complicate the matter. Brushes
high surface coverage are also rarely studied. Higher-o
interactional terms inr become important; thus the mea
field potential is no longer simply proportional to the loc
concentration. That is another density regime where the
rent model fails to describe. For the moderately high cov
age considered here, the mean-field theory should be
equate for capturing the main physical phenomena.
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APPENDIX: BLOB MODEL

Consider a brush formed by randomly branched polym
grafted at one end on a planar surface. We assume that
are strongly stretched along the normal to the planar surf
Schematically, grafted polymers can be subdivided i
blobs of sizej, each of them containingg monomers. Each
polymer now can be regarded as a string ofN/g blobs
stretched along the normal to the surface, whereN is the
monomer number of a single polymer. Therefore, the br
heighth scales as

h5SNg D j. ~A1!

The blob sizej is approximately the average distance b
tween grafted sites on the surface, which can be expresse
terms of the grafting coverages as

j5 ls21/2, ~A2!

wherel is the Kuhn length. The monomer numberg can be
obtained according to the relation given for the homog
neous system of interacting RBPs since the correlations
tween monomers are dominated by the excluded-volume
fects within each blob. From Ref.@19#, we have

g;u23/7L1/7j13/7 ~A3!

for a three-dimensional model, whereu is the volume param-
eter andL2 the tribranching activity@21#. Using Eqs.~A2!
and ~A3! in ~A1! yields

h;~us!3/7NL21/7, ~A4!

which is the same as that obtained from the Flory-type ar
ment, Eq.~5!.
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