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Self-consistent-field theory of a brush of randomly branched polymers
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The conformational properties of randomly branched polymers grafted at one end on a planar surface in the
good solvent regime are investigated by using a Flory-type scaling theory and by solving a self-consistent-field
model numerically. The average monomer height obtained from the self-consistent-field model is shown to be
in agreement with the scaling behavior predicted from the scaling theory. The density profile is found to have
a near-parabolic form with some discrepancies near the surface and the brupB1€R-651X97)05501-3

PACS numbeps): 36.20—-r, 82.65.Dp, 61.25.Hq

[. INTRODUCTION formational entropic contributioh19]. We present below a
Flory-type argument that includes these entropic contribu-
The study of the behavior of tethered polymer chains hasions and an excluded-volume energy, which leads to a
attracted considerable interest due to the wide range of prapower-law scaling behavior of the average brush height as a
tical applicationg1]. Several approaches, including scaling function of the molecular weight and surface coverage. The
analyses[2,3], self-consistent-field theorie§4—10, and resulting “brush exponent” to be defined below, is different
Monte Carlo(MC) [11-14 and molecular-dynamics simula- from that of quenched RBP brushes recently studied by
tions[15,1€], have been employed to model these systemsZhulina and Vilgis[18].
In these studies, the conformational properties of linear poly- We have also performed a numerical calculation based on
mer brushes are consistently shown to obey universal scalintpe self-consistent-fieldSCH approximation to further sup-
laws. Branched polymers, naturally occurring or chemicallyport our conclusion. As is well known, the SCF approxima-
synthesized, are also expected to display various static artibn is a powerful method to treat confined systems consist-
dynamic scaling behaviors that are system independent. It ing of many interacting polymefg}]. The basic technique is
a challenging and certainly not a trivial theoretical problemto obtain the information on chain configurations represented
to understand the conformational properties of the polymeby the end-to-end Green’s function by solving a partial equa-
brush formed by branched polymers. Recently, Carignandion subject to a potential that, in turn, depends on the mono-
and Szleifef17] explored the conformational and thermody- mer density self-consistently. For linear brushes, the analyti-
namic properties of graftedf-shaped polymer brushes by cal SCF theonyf7,8] yields a simple analytic prediction for
using an approach based on the probability distribution functhe structure of the system of moderately high surface cov-
tion formalism[10]. Zhulina and Vilgis[18] presented a erage. For instance, the segment density profile and the po-
simple scaling analysis for the brushes formed by regularlyential field are found to be parabolic, of the foam bz
and randomly branched polymers. wherez is the distance from the surface. For RBP brushes,
While many statistical properties of regularly branchedthe SCF mode]20] allows us to examine the basic structure
polymers such as comb, star, and starburst polymers am the theory, but is almost impossible to be solved analyti-
similar, randomlybranched polymer@RBP9 form their own  cally. We thus resort to a numerical SCF method for the
classes of properties that are, in general, quite different fronmvestigation. Our method is based on the statistics of a
those of the regular ones. In the present work, we studgingle polymer brush and overcomes the usual difficulties
scaling behaviors of the brush height and monomer densitgssociated with modeling many polymers simultaneously in
of a brush formed by randomly branched polymers in a gooa typical computer simulation. For linear polymer brushes,
solvent with one end grafted to a planar surface. Accordinghis method generates results in overall agreement with the
to the classification of Gutin, Grosberg, and Shakhnovictanalytical SCF theory.
[19], RBPs should be further distinguished according to their This paper is organized as follows. A Flory-type argu-
branching structures. Those witdnnealedbranchings and ment for the height of the brush is presented in Sec. IlI, while
those withquenchedbranchings may display different be- a scaling theory based on the blob assumption is discussed in
haviors. In this paper we focus on the properties of annealethe Appendix. A mean-field theory for the systems of inter-
branched polymers, whose branching structures are coracting randomly branched polymers is briefly discussed and
trolled by maintaining a constant branching activity and thusa MC numerical method is proposed in Sec. Ill. The results
are directly affected by the monomer-monomer interactionsfor a variety of molecular weights and surface coverages of
This implies that there is an additional, structural entropiclinear-chain and annealed RBP brushes are presented in Sec.
contribution to the free energy besides a conventional, conbV. Section V is devoted to a summary.
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Il. SCALING ANALYSIS when the largeN limit is considered. de Gennes showed Eq.

The Florv-tvpe argument is a simole and efficient theo—(4) in Ref.[22] for RBP solutions in the point condition.

. y-typ 9 : p'e an We showed earlief23] through perturbation expansion that
retical treatment .fOI’. the sc_allng bghawors In many ponmerin the case of annealed RBPs in a good solvent, the same
systems. When it is applled_ to Imear-po_lymer brushes_ elation is valid asymptotically for larghl. Caution should
good solvents, the conformational properties are determine e used in the practical use of E@), asn/N may var

by balancing the repulsive excluded-volume interaction enaramatically atpsmaIIN and n :’and ;pproac};wes yan
ergy with the entropic energy penalty of stretching a typicalN—independent constant only at Térgb In this paper, we
fﬁ:g]v:\rgz}é Kgirghtthii (g){;)?;tilrr:g dsg';fiqci?]'ir;g%gsiﬁgnf?e?remefg?ssumaNithout proof that the same relation exists even in
with respect tch, which yieldsh~N(uc) Y3, whereh is the he case of imposing a hard-wall boundary condition.

. . . : Minimizing the free energy¥ =F.+F,;+ F with respect
brush heightN _the moIeCL_JIar weight of a single chaim,the to L andh we find the expression ?or the eauilibrium brush
number of chains per unit surface area, anthe excluded- hei

; . eight

volume parameter of two interacting monomédgy. For
moderates and largeN, this result agrees with those ob- h~(uo)¥NA 17, (5)
tained by other methods, such as the scaling argufr8nt
that is based on a blob model, the analytical SCF thEa8|  We may rewrite this equation in terms of the ratiéh,
that utilizes a classical trajectory approach, and numericaj\/hereho~|(N/A)1’4 [24] is the mean brush height of ideal
simulations [13,14 that are based on various numerical polymers when no interaction is present
methods.

We consider a RBP brush grafted at one end on a planar h N
surface with a grafting coverage in a good solvent. Each h_o:Q ' ©®)
monomer, except the one directly embedded on the surface,
is assumed to be trifunctional, from which a branch maywhere
grow with a certain branching probability?. According to
Gutin, Grosberg, and Shakhnovigh9], the Flory-type free
energy for such a polymer, moving freely in a solvent, con-
tains three termk,, F,, andF¢ corresponding to the elastic
energy, the volume interaction potential, and the entropylhe brush exponent(Flory)=3 characterizes the scaling be-
contribution from the rearrangement of branching structureshavior of RBP brushes.

714

Q=u0A2(— (7)

A

respectively. The elastic energy has the form The Flory-type theory presented above is valid in the den-
sity regime where the approximation of the second virial
h? coefficient can be adopted for the interaction energy. The

Fe:f' (1) particular form of the interaction energy in E@) explicitly

reflects this approximation. Polymer brushes of high-volume
where L is the average contour length of a representativalensity behave more like a polymer melt, which cannot be
branch starting at the surface grafting site to a free externalescribed simply by the quadratic term in the density.
end. The energy of the excluded-volume interaction betweehligher-order virial coefficients must be included. The Flory-
a representative polymer with the mean-field densily/h Huggins energyl— ¢)In(1—¢), whereg is the volume frac-
produced by the monomers is approximated by tion, is probably a more suitable choice for qualitatively de-
scribing the high-volume-density behavior. Another potential
problem of the Flory-type theory is its use of the elastic
energy of the form in Eq(1), which is based on a Gaussian-
like distribution function forh. Since the distribution func-
The excluded-volume interaction is responsible not only fortion could be quite different from the Gaussian form at the
making polymers stretching away from the surface but alstighly stretched limit, the elastic energy that acts to confine
affects the statistics of the branching structure. The conforthe polymers near the surface is underestimated at this limit.
mation entropic contribution to the energy due to such arGenerally, the Flory-type theory and the scaling behavior
effect can be evaluatefdl9,21] by using de Gennes’ dia- predicted from it are valid in the moderate-volume-density

Fi:UO'—. (2)

grammatic methodi22] regime.
5 An interesting similarity exists between the expressions
. :L_ 3) for the mean brush heights of randomly branched polymers
S N/A® and linear polymers: both depend linearlynThe fact that

RBPs with annealed branchings may attempt to move the
In comparing with Gutin, Grosberg, and Shakhnovich’sbranching points farther from the surface to acquire more
original expressio19], we have introduced the factdrin  packing space makes the density distribution function quite
Eq. (3) in order to account for the branching probability, smooth, if not flat. We may use the linear dependencélon
which is assumed to be related to the mean tribranchings the starting point for a scaling theory based on the blob

numbern; of the molecule$22,23 model similar to that proposed by de Genr@$ for the
linear brushes. As shown in the Appendix, such a theory
N3 results in the same scaling behavior predicted by the Flory-
A_ N (4)
N type theory presented above.
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Zhulina and Vilgis [18], however, studied the brush [4-6,9,1Q. However, it is very difficult to generalize these
formed by attaching one end of branched polymers withmethods to obtain the monomer density of the RBP systems
guenchedobranching structures to a flat surface. It has beerby solving the SCF equatiorf20]. Here we adopt a MC
generally shown that annealed and quenched randomiyumerical procedure that enables us to calculate the density
branched polymers behave differently in a good solvenprofile directly by using Eq(8). The main idea is to isolate
[19,21). The theory of Zhulina and Vilgi§18] is equivalent  the structure complicity, which is modeled by a MC proce-
to using the free energly =F.+F, with the mean length  gyre, from making a mean-field approximation for the inter-
in Eq. (1) replaced by its mean value at tAéemperaturd?. action energy.

The third term in the free energy E(B) does not exist due e used an iterative MC simulation method, which con-
to the fixed topology. The resulting equilibrium mean tains the following procedure. An initial density profiéz)
height also has the scaling form given by E(®. and(7),  \as proposed and used in the mean potential fie(d)
however, with a different brush exponent(Flory)=3. In  —y,(2) for an initial MC run, in which the statistics of
terms of a direct power-law expressiom(quenchel  polymers with different branching structures and configura-
=(uo)"N>A "> The major difference between the an- tions were sampled and a new average density profile was
nealed and quenched cases is in the scaling dependence Qfieasured.” This profile was then used as an approximation
N: annealed polymers tend to stretch farther from the surfacgy the mean field of the next run and a new density profile
and the quenched polymers tend to maintain a “slower”\yas produced. The procedure was considered convergent
power-law behavior because of the structure constraint. Th@nen the relative difference between density profiles of the
structure constraint further sets a maximum extension limityg consecutive runs became smaller than a preset criterion.
on the quenched polymef$8], while the annealed polymers Thjs method was shown to be very efficient for solving the
can, in principle, be rearranged and stretched to reach Grafted problems of linear chains as well as randomly
maximum extension oI from the surface, with the cost of pranched polymers.

losing conformational and structural entropies. It is worth  pore specifically, each MC run consisted of a number of
noting that the brush exponent for quenched RBP brushegic steps. The MC method used in this study is a generali-
(A=3) is the same as the exponent that governs the scalingation of the off-lattice pivot method developed for the ho-
behavior of linear-chain brushes, when the latter is expressq(‘;ﬂogeneous systems of randomly branched polym2ts,

in terms of scaled variables in a form similar to E6). except for the part of imposing a hard-bead interaction,
which is now represented by the effective mean field. In our
simulations, the RBP model was treated as a treelike mol-
ecule of links ofN identical rigid bonds of length, freely

An elegant result in the theory of linear polymer brushegointed together in three-dimensional space, with one end
is the parabolic solution of the density profile derived bypermanently fixed at=0. The flat surface was assumed im-
Milner, Witten, and Catef7] and Skvortsowt al.[8]. This ~ penetrable and placed parallel to they plane atz=0. The
analytic result sets an asymptote for tie-1 limit and has ~ other monomers were constrained to move in the positive
been checked by various numerical simulations. The succe§@lf space(z>0). For a flat surface, we broke the space into
of the theory largely depends on the similarity in the formu-discrete slabs of width'4 and treated the density within each

lation structures of the linear polymer theory and the classislab as a constant. The density was then calculated as a func-
cal dynamics of a single particle. tion of z only, due to the symmetry; no or y dependence
The mean-field theory for branched p0|yme|’s' howeveryvas taken into consideration. At every MC step, a branching
lacks its analogy in classical mechanics. The importanPosition was chosen at random and one of the neighboring
physical quantity is the Green’s functi@y(r,r’;t) of a ran-  bonds was cut to produce two pieces of the polymer: one still
domly branched polymer containiigmonomers with two connected to the surface and another free from the surface.
external ends having positions denoted by vectoesdr’,  The free portion of the polymer was rotated as a rigid body
which can be showfi20] to obey a nonlinear partial differ- t0 & new position randomly. Then an arbitrary point on the
ential equation in the presence of a mean field. For RBRINrotated portion of the polymer was located for reconnect-
brushes grafted on a flat surface, the mean field can be coif?d the two pieces. The configuration was rejected if the

sidered as a function of the varialde@long the normal to the  chosen point was already branched. Each monomer was sub-
surface, ject to an external potentialp(z). Subsequently, the new

configuration was accepted or rejected according to the usual
w(2)=up(z), (8 Metropolis algorithm of comparing the Boltzmann factors
corresponding to the two configurations. At this point we
alculated the average monomer distribution function. A
pical run consisted of approximatelyNx10* MC steps.
In the next run, the obtained density profile was substi-
ted into the mean field and a new density profile was cal-
ulated the same way. The moments of the density profile

Ill. SELF-CONSISTENT-FIELD MONTE CARLO
METHOD

whereu is the excluded-volume parameter api@) is the
average monomer density. By summing over the probabilit)?
of configurations passing through a spatial panp(z) is ty
determined by the three-point correlation functi¢3],
which satisfies a complicated equation due to the branchin
structureg see Eq.(3.2) of [23]]. Note thatp(z) is directly
proportional to the number of polymers per unit grafting- " "
surface arear in the SCF approximation and thus thaand <ZH>EJ z”p(z)dz/ f p(z)dz (n=1,2,..) (9
o appear as a single combination. 0 0

There are several numerical procedures in the literature to
solve the mean-field equation for linear polymer systemsvere calculated at the end of each run. The iterations of a
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FIG. 1. Scaled average brush heiglah/N*? and the mean- FIG. 3. Scaled chain-end probability distributiot/*Npg(z) as
square radius of gyration normal to the surfdeg)*?NY? of a  a function of scaled distance from the grafting surfatfer’*N) of
linear brush plotted as a function ofN®? on a log-log scale for a linear brush. The solid line corresponds to the analytical SCF
0=0.025(circles, 0.05 (squarel 0.075(diamond$, 0.10 (up tri- result from Eq.(13). The meaning of the symbols is the same as in
angles, 0.15 (left triangles, and 0.20(down triangles The two Fig. 2.
straight lines indicate the asymptotic behavior with the same slope

of 1. 1 N 1 N2
<ZS>:N21 zi—NE Zi) , (10
series of runs were terminated when the relative difference =

between the new and old mome:(lt§) (n=1,2,..:,10 of the are plotted in Fig. 1 as functions ¢1=0N%2 For conve-
density profiles became less than $0For a given set of °. ) .

: g ._nience, in the rest of this paper we set the Kuhn lerngth
molecular weight and surface coverage, a typical calculation
that was performed contained usually less than four itera-

tions. 0.5 — ¥ . T
;2 (a)
<04t 1
IV. RESULTS AND DISCUSSION =
The algorithm proposed above is quite general and is in- £ 0.3 r 1
dependent of the type of polymers under study. To test our -
algorithm, we first studiedinear polymer brushes for vari- 02t .
ous surface coverages=0.025, 0.05, 0.075, 0.10, 0.15, 0.20 A
and various chain length®4=10,20,50,100,150,200,300, 01 I g
400,500. The average monomer height and the root-mean- I
square radius of gyratioz5)"/%, where(z3) is defined as Y ) . .
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i/N
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FIG. 2. Scaled monomer density profile 23p(z) as a function
of scaled distance from the grafting surfagéo*N) of a linear

brush for (N,0)=(100,0.05 (circles, (100,0.10 (squarey (100,
0.20 (diamond$, (200,0.05 (up triangle$, (200,0.10 (left tri- ment of the monomer positior(&z?)/(zi)2 as a function of/N for

angle$, (200,0.20 (down triangleg (400,0.05 (right triangles, linear chains. The solid line corresponds to the analytical SCF re-
and (400,0.10 (crosses The solid line corresponds to the analyti- sults from Eqs(14) and (15). The meaning of the symbols is the

cal SCF result from Eq12). same as in Fig. 2.

FIG. 4. (a) Scaled average brush height of monomers
(zi>/(al’3N) and (b) relative z-component mean-square displace-
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TABLE |I. Numerical results for the conformational properties of the RBP brushes.

o N (2) (z5) ns T N (2) (z5) ng
0.025 10 1.181 0.464 2.139 0.10 10 1.365 0.585 2.094
20 1.816 0.933 5.015 20 2.325 1.484 4.876
50 3.507 2.937 13.60 50 5171 6.507 13.18
100 6.195 8.549 27.96 100 9.865 22.60 27.06
150 8.961 17.32 42.28 150 14.30 46.19 40.88
200 11.59 27.86 56.65 200 19.13 81.33 54.72
300 17.00 59.00 85.22 300 27.74 179.4 82.24
400 22.42 101.0 1139 400 37.53 318.7 109.6
500 28.18 161.0 142.4 500 45.87 486.9 136.3
0.05 10 1.248 0.509 2.122 0.15 10 1.468 0.668 2.056
20 2.008 1.125 4.969 20 2.568 1.795 4.784
50 4.183 4.177 13.45 50 5.861 8.283 12.96
100 7.784 13.54 27.64 100 11.25 29.18 26.59
150 11.35 27.54 41.78 150 16.92 64.81 40.24
200 14.77 45.90 55.87 200 22.23 113.5 53.49
300 21.84 104.8 84.09 300 32.36 237.7 80.40
400 29.00 181.0 112.3 400 42.65 443.4 106.9
500 35.57 270.3 140.5 500 51.50 629.5 133.2
0.075 10 1.315 0.552 2.103 0.20 10 1.557 0.739 2.021
20 2.175 1.313 4915 20 2.778 2.085 4.703
50 4.676 5.289 13.33 50 6.377 9.942 12.77
100 8.875 17.98 27.26 100 12.36 36.98 26.15
150 12.93 37.65 41.26 150 19.08 86.32 39.14
200 17.10 65.16 55.29 200 24.13 139.6 52.65
300 25.63 147.3 83.10 300 36.06 317.7 78.77
400 33.57 249.8 110.8 400 47.05 538.3 103.9
500 40.85 376.4 138.3 500 56.24 773.6 130.9

and the volume parametar=1 sinceu ando always appear The agreement between the data points and the SCF predic-
as a single combination in the mean-field approximation. Theion is fair; previous numerical studi¢43,14] also showed
figure shows an excellent agreement with the analytical SCkhat the comparison qfg(2) is less satisfactory. In addition,
results: the data points fall almost exactly on the straight lineve also compared with the analytical SCF prediction the
characterized by a slope §f The brush heigh reaches an average heightz) of the ith monomer and the relative

asymptotic behavior that can be approximated by mean-square displacement of the monomer positions along
the z axis (Az?)/(z)?, where (Az?)=(z?)—(z)?. Once
h=(0.74+0.02 "N, (11 again, the data shown in Fig. 4 are well represented by the

SCF theory(solid curve
which is consistent with the analytical result

h=(4c/7?)*N. In Fig. 2 we show the scaling plot of the (zy 3(m\"® ix
density profilea?®p(z) as a function ofz/(a**N) for dif- JN " glz] SN (14
ferent surface coverages and molecular weights. The solid
curve in Fig. 2 is the SCF resJl7,8] and
- 3 7_‘.2 1/3 z 2 AZZ
o 2’3p(2)=§{(7) —(m> } (12 <<Z—_>'7>=o.1528. (15
1

The simulation results are well represented by the paraboligonsidering the overall agreements between these numerical
equation(12). The scaling dependence &hand o of the  results and the well-known theories, we conclude that our

chain-end density distributiope(2) is also tested by plotting  numerical procedure provides an effective method to study
(TllSNpE(Z) againStZ/(TlISN in F|g 3 together W|th the SCF the po'ymer brush prob|em_

prediction(solid curve: Next, we present the numerical results for the brushes of
) o3 1o rando_mly branched polymgrs. In order to verify the scaling
V3 z)=3i Z 4\ [z equation deduced earlier in Sec. Il, we examined systems
o Npe( 4 | oPN/|\ 72 PN : with various values ofr (=0.025,0.05,0.075,0.10,0.15,0)20

(13 and N (=10,20,50,100,150,200,300,400,500able | is a
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FIG. 5. Scaled average brush heigit/(N/A)Y*and the mean-
square radius of gyration normal to the surfdag)"/%(N/A)™
plotted as a function ofQ=aN"*AY on a log-log scale for
0=0.025(circles, 0.05 (squarey 0.075(diamond$, 0.10 (up tri-
angles$, 0.15(left trianglesg, and 0.20(down triangleg for the brush
formed by randomly branched polymers. The two straight lines in-
dicate asymptotic behavior with the slope of 0.41.

summary of the original data obtained for the mean brush
height (z), mean-square radius of gyrati((rzé), and the
mean tribranching number; from the calculations.

We show in Fig 5 a log-log plot ofgz)lsN/A)l"" and ' ' z
(zHYA(NIA)Y* as functions ofQ=oN™AY for all the
data points shown in Table I. It can be observed from Fig. 5
that the data for larg€ lie closely on a straight line for both
(z) and(z3)"? and that the slopes of the two straight lines
are almost the same. This implies that the asymptotic scaling
behavior in Eq.(5) is indeed valid for large). Using the
data points corresponding =20, we estimated the brush
exponent

A=0.41+0.02. (16)

This value is quite close to the Flory exponértFlory)= 0.0 0.0 ' 0.4 0.6 0.8

2=0.43] discussed above and is substantially larger than the
linear-brush valug\(linean=3]. By examining Fig. 5, we
see that the data points approach the asymptotic behavior
Ijrgtrg rg‘iﬁe%bof\r/gr’nw’?f:gh r:Trgléeri:atllha;;thae iiffeacl:\s:/\g/sexsliognhil?/ tfrom the grafting surfacez for the brush formed by randomly
. . .2 Jbranched polymerga) corresponding toN=200 and ¢=0.025

smaller than the actual value. The nsumerlcal mvestlgatlorecircles)’ 0.05(squarey 0.075(diamonds, 0.10(up triangles, 0.15
strongly supports the Flory exponent7 for annealed RBP (left triangles, and 0.20(down triangleg (b) corresponding to
brushes. . _ ¢=0.10 andN=50 (circles, 100 (square} 150 (diamonds$, 200

Figures €a) and @b) show several mean density profiles (,p triangles, 300(left triangles, and 400(down triangle; and(c)
p(z) obtained for different surface coverages and moleculagcaled plot for(N,o)=(100,0.05 (circles, (100,0.10 (squares
weights. Qualitatively, the overall shape of the mean monot100,0.20 (diamonds, (200,0.05 (up triangles, (200,0.10 (left tri-
mer density is comparable to those found for linear polymegngles, (200,0.20 (down triangle (400,0.05 (right triangles,
brushes. Because a RBP is a denser object than its lineand(400,0.10 (crossek
counterparts, the density profiles are “compressed” more
closely to the surface. Near the first few monomer distancesurface coverage and that the height of the peak is indepen-
from the surface, the profiles show oscillations up to aboutlent of the molecular weight as in the case of linear chains
2-3 monomer layers. Such oscillations gitz) were also [14]. Following the peak, the profile decays monotonically.
observed in other simulations of the linear polymer brushe®ear the brush end, the polymers are not stretched and the
[10,13. In our case, the oscillations are probably due to themonomer density decays to zero smoothly.
discreteness of choosing a rigid bond of fixed length to con- In order to examine the scaling behavior for RBP brushes,
nect two monomers in the model. Slightly away from thewe plot in Fig. Gc) the scaled profiler #’A~Y" p(z) as a
surface, the profile shows a peak. We observe that the posinction of the scaled distanao>’NA 7 from the graft-
tion of the peak is insensitive to both molecular weight anding surface for several sets & and o. Except near the

z/(0_3/7NA41/7)

FIG. 6. Monomer density profile(z) as a function of distance
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FIG. 7. Density profile of the free-end monomers(z) as a Fl.G' 8. De_nS|ty profile of the trlbrgnchlng monomerg(z) as a
. - - function of distance from the grafting surface for the brush
function of distance from the grafting surface for the brush .
formed by randomly branched polymers. The meaning of the sym-

formt_ad by randomly _brar_lched polymers. The meaning of the Symbols is the same as in Fig. 6.
bols is the same as in Fig. 6.

grafting surface and the brush end, most data collapsehich are plotted in Figs. 7 and 8. Since the branching points
roughly onto a single universal curve. Note that near theare randomly constructed, the profiles @f(z) and p(2)
brush end the decay to zero is sharper for systems of highejualitatively display behavior similar to that of the overall
molecular weight or larger surface coverage. The brushnonomer density profile 0f(z). These plots indicate that
heighth can be estimated from the point whe(z) =0 is  there is a uniform distribution of the tribranching units and
first approached in Fig. 6. For the largerlimit, we have the free-end units over the whole brush layer. This is very
_ 37Ny A — 177 different from the chain-end density profile of linear brushes,
h=(0.57£0.03NA (7 where there is a pedlsee Fig. 3indicating that the free end
The shape of the universal density profile closely resembles Wil preferably stay away from the hard surface. The scaling
parabolic curve; however, we are not able to verify analyti-dependence gz andpr on N ando is further demonstrated
cally the existence of a parabolic function through solvingby plotting 6*’A~87 pe(2) and 6®*’A~¥7 p(z) againstz/
the mean-field model. a>"™NA Y in Figs. 1c) and &c) for several sets dfl ando.
We also calculated the density distributions for the free-Again these plots show that universal asymptotic scaling be-
end monomergpg and for the tribranching monomeys, haviors exist.
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V. SUMMARY APPENDIX: BLOB MODEL

We have studied annealed RBP brushes of different mo- Consider a brush formed by randomly branched polymers
lecular weights grafted on a planar surface in the good solgrafted at one end on a planar surface. We assume that they
vent condition at different values of surface coverages. Ware strongly stretched along the normal to the planar surface.
have used a single-polymer SCF approximation in which theschematically, grafted polymers can be subdivided into
mean field represents effectively the interactions betweeblobs of size, each of them containing monomers. Each
monomers; the mean field is expressed in terms of the locadolymer now can be regarded as a string Mdfg blobs
volume concentration dependence of polymers. Using an itstretched along the normal to the surface, whrés the
erative Metropolis MC method for single-polymer configu- monomer number of a single polymer. Therefore, the brush
rations, we obtained the conformational properties numeriheighth scales as
cally. We found that the average monomer height scales as
h/(N/A)Y4~Q* for Q=oN"*AY*=20 for the range of pa-
rameters considered here. The “brush exponenthas a hz( 3 (A1)
value of 0.41-0.02 for annealed RBP brushes. The density

profile is found to have the same qualitative form as that of e plob sizet is approximately the average distance be-

linear-chain brushes. Most significantly, the monomer denyyeen grafted sites on the surface, which can be expressed in
sity profile also displays a paraboliclike form, which at the io;ms of the grafting coverage as

present has no support from an analytic solution.
Our calculation is based on the SCF approximation. It is g=lo— 12 (A2)
known that such a mean-field model would fail when the ’

spatial fluctuations of the monomer density became Iargq,vherel is the Kuhn length. The monomer numlgecan be
Such fluctuations become important when polymers a%btained according to the relation given for the homoge-

grafted to a surface with low surface coverage. For randoml%eous system of interacting RBPs since the correlations be-

branched polymers, the additional structural fluctuations, ... monomers are dominated by the excluded-volume ef-

would probably further complicate the matter. Brushes a?ects within each blob. From Ref19], we have
high surface coverage are also rarely studied. Higher-order ' '
interactional terms irp become important; thus the mean-
field potential is no longer simply proportional to the local
concentration. That is another density regime where the cur:-

r . . )
rent model fails to describe. For the moderately high cover]cor a three-dimensional model, wheres the volume param-

age considered here, the mean-field theory should be agter andAZ the tripranching activin{21]. Using Eqs.(A2)
equate for capturing the main physical phenomena. and(A3) in (A1) yields

g~ u73/7A1/7§13/7 (A3)
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